
International Journal of Computer Trends and Technology Volume 68 Issue 11, 53-58, November 2020

ISSN: 2231 – 2803 / https://doi.org/10.14445/22312803/IJCTT-V68I11P107 © 2020 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

A Hybrid Approach for Fault Tolerance in

Datagrid

Senhadji sarra
1
, MEGAIZ Samia

2
, SADOK Riad Mustapha

3

1,2,3
computer science department, faculty of mathematics and informatics, University of Science and

Technology Mohamed Boudiaf, Oran, Algeria

Received Date: 09 October 2020

Revised Date: 19 November 2020

Accepted Date: 20 November 2020

Abstract - In recent years, we observe a considerable

growth of data that needs to be stored, analyzed, and

exploited. In response to these needs, grid systems appear to

offer large-scale networks and geographic sharing

resources around the world. However, grids are extremely

dynamic where nodes are heterogeneous and volatile which

increases the probability of failure. Two main solutions

handle this problem: masking and no masking technique.

For the masking one, the fault and its resolution are hidden

from the client and the system still being operational.

Contrarily to the no masking solution, the fault can stop the

execution for a while until the fault is resolved.

In this paper, we propose a hybrid solution that

combines two fault-tolerance methods, one masking and the

other non-masking using respectively recovery and

replication techniques.

Keywords - fault tolerance, recovery, replication, Datagrid

I. INTRODUCTION

Fault tolerance is a method that allows a system to

continue to work, possibly in reduced performance, instead

of failing, when one of its components no longer functions

correctly. In other words, the system does not stop

functioning, whether there is hardware failure or software

failure.

A grid is a distributed system composed of many nodes,

present in different sites, with different configurations.

Besides nodes in the grid are volatile and they can join or

leave the system at any time. For this reason, it is necessary

to guarantee the continuity of the grid whenever a node

disappears.

II. FAULT TOLERANCE DETECTION

The detection of faults in a distributed system is not

trivial and represents an essential prerequisite for the

implementation of the fault tolerance solution. The study of

fault detectors is therefore very important.

Failure detector can be classified as reliable or

unreliable depending on the results it produces. [17]

If the output of the failure detector is always accurate it

is called a reliable failure detector. An unreliable failure

detector is one that provides information that is not

necessarily accurate and it may take a very long time for

detection of faulty process and produce false results, which

means that it is impossible to distinguish a slow process

from a failed process.

A. Properties of fault tolerance detector

Fault detectors can make errors in their diagnosis. That’s

why some properties are considered to verify their

efficiency: [17]

 Completeness: either the detector may not see some

faults

 Accuracy: the detector can see faults where there are

none. That’s means when a process is detected as

failed, it has failed.

 Speed: Time for the detection of failure should be as

shorter as possible. In other words, the time between

the occurrence of a failure and its prediction must be

small.

B. Fault detection mechanism

Different mechanisms are used for tolerating faults:

 Pro-active vs. post-active mechanisms: In pro-active

mechanisms, the failure consideration for the grid is

made before the scheduling of a job, and dispatched

with hopes that the job does not fail. Whereas, post-

active mechanisms handle the job failures after it has

occurred.

 Push vs. Pull mechanisms: In the push model, grid

components periodically send heartbeat messages [7] to

a failure detector, announcing that they are alive. In the

Senhadji sarra et al. / IJCTT, 68(11), 53-58, 2020

 54

absence of any such message from any grid component,

the fault detector recognizes that failure has occurred at

that grid component. In contrast, in the pull model, the

failure detector sends live-ness requests (“Are you

alive?” messages) periodically to grid components [7].

III. FAULT TOLERANCE APPROACHES

In the literature, we distinguish two main approaches for

tolerating faults in distributed systems: masking fault

approaches and no masking fault approaches.

In the masking solution, the fault and its resolution are

hidden from the client and the system still being operational.

“Replication” is the most known technique in this type of

approach. Contrarily to the no masking solution, the fault

can stop the execution for a while until the fault is resolved.

“Check to point” is the most used technique to recover the

occurred faults.

A. Replication

 The job replication and determination of the optimal

number of replicas involves many technical considerations.

The replication in grids has been studied in [Chtepen et al.

2006]. Several approaches have been used to implement

replication in a grid computing environment. In general,

replication is classified into static and dynamic models

[Chtepen et al. 2006]. The static replication means that,

when some replica fails, it is not replaced by a new one. The

number of replicas of the original task is decided before

execution. While in the case of dynamic replication, new

replicas can be generated during run time.

B. Checkpointing

 It consists of snapshot records of the entire system state

to restart the application after the occurrence of some failure.

The checkpoint can be stored on temporary as well as stable

storage [11]. However, the efficiency of the mechanism is

strongly dependent on the length of the checkpointing

interval. Frequent checkpointing may enhance the overhead,

while lazy checkpointing may lead to loss of significant

computation. [14] [10]

 Therefore, various types of checkpointing optimization

have been considered by the researchers, e.g., (i) Full

checkpointing or Incremental checkpointing (ii)

Unconditional periodic checkpointing or Optimal

(Dynamic) checkpointing (iii) Synchronous

(Coordinated) or asynchronous (Uncoordinated)

checkpointing, and (iv) Kernel, Application or User level

checkpointing.

IV. RELATED WORKS

 We present in this section some works of fault tolerance

in grid systems based on replication, checkpointing, and

hybrid solutions.

A. Works based on replication solution

 Cherian et al. [Cherian et al. 2010] proposed a solution

for handling faults in a grid environment. Fault-Tolerance

using Adaptive Replication in Grid Computing (FTARG) is

an adaptive replication middleware which addresses the fault

tolerance of Grid-based applications by providing data

replication at different sites. FTARG is an Aneka based Grid

middleware especially designed for high-performance Grid-

based applications. FTARG enables data synchronization

between multiple heterogeneous databases located in the Grid

by supporting a variety of synchronization modes.

 The author of [5] introduces several dynamic on-line

scheduling heuristics that reduce task loss and execution

delay resulting from resource failures. The heuristics are

based upon task replication and rescheduling of failed tasks.

The characteristic of the proposed methods is the relative

simplicity and the efficiency with which they are dealing

with dynamic grid environments.

 [2] addressed the problem of scheduling user jobs in

grids so that failures can be avoided in the presence of

resource faults. The author employed job replication as an

effective mechanism to achieve an efficient and fault-tolerant

scheduling system. Most of the existing replication-based

algorithms use a fixed number of replications for each job

which consumes more grid resources. An algorithm was

proposed to determine adaptively the number of job replicas

according to the grid failure history. Then another algorithm

is proposed to schedule these replicas. The obtained results

showed better performance in terms of grid load, throughput,

and failure tendency.

 Other works can be cited as [15], [6] …..

B. Works based on a checkpointing solution

 A classical fault repair has been proposed in [Elnozahy

et al. 2002]. The basic principle is to back up the state of the

system periodically on reliable and persistent support (e.g.

hard disk). In this way, when restarting after a failure, the

most recent backup state is restored and the execution

resumes its execution before the failure. The global state of a

distributed system is defined by the union of local states of

all processes belonging to the system.

 Authors of [8] proposed a grid workflow system (grid-

Fig. 1 proposed grid topology

Senhadji sarra et al. / IJCTT, 68(11), 53-58, 2020

 55

WFS), a flexible failure handling framework for the grid,

which addresses these grid-unique failure recovery

requirements. Central to the framework is flexibility by the

use of workflow structure as a high-level recovery policy

specification. They show how this use of a high-level

workflow structure allows users to achieve failure recovery

in a variety of ways depending on the requirements and

constraints of their applications.

In [9] the author proposed a new strategy named RFOH

for fault-tolerant job scheduling in computational grid. This

strategy maintains the history of fault occurrence of resources

in Grid Information Server (GIS). Whenever a resource

broker has jobs to schedule, it uses this information in the

Genetic Algorithm and finds a near-optimal solution for the

problem.

 Other works can be cited as [3], [1], [4] …….

C. Works based on a hybrid solution (replication and

checkpointing)

 [16] introduced Satin system recently schedules the

engrained tasks of a divide-and-conquer application across

multiple clusters in a grid. To accommodate long-running

applications. They present a fault tolerance mechanism for

Satin that has negligible overhead during normal execution

while minimizing the amount of redundant work done after a

crash of one or more nodes

 Another work of [13] proposed two-hybrid fault

tolerance techniques (FTTs) that are called alternate tasks

with checkpoints and alternate tasks with retry. These

proposed hybrid FTTs inherit the good features and

overcome the limitations of workflow level FTT and task

level FTT. Authors conclude that the alternate task with

checkpoint improves the reliability of a grid system more

significantly than the alternate task with retry.

 The fault tolerance works cited in this section are not

exhaustive, but only a few works used replication and

checkpointing together to benefit from the advantages of

each one. For this reason, we propose a hybrid solution to

improve fault tolerance management.

V. PROPOSED APPROACH

 In this section, we present in detail our contribution to

the fault tolerance problem.

A. Grid topology :

 We propose a hierarchical architecture with n levels. As

illustrated in fig 1, the root node supervises all descendant

nodes. The original data is hosted in the root node and

replicated over the intermediate nodes.

B. Proposed solution:

 To ameliorate the fault tolerance, we use both

replication and recovery solutions.

a) Replication

 The replication allows us to reduce the time of transfer

of data between nodes and guarantee high availability and

reliability. However, replication of data over all nodes of the

grid is complex and needs to be controlled whenever a

replica is updated. To reduce the number of replicas, we

choose a dynamic replication strategy, where the frequently

used data are replicated periodically.

Replication algorithm

Input:grid configuration file

Output: grid replication file

//root node :

For each node i of the grid do

If node j has minimal transfer

Then if replica k doesn’t exist in node j

Then create replica k in node j

Else overwrite the less frequently

used replica by replica k

End if

End if

End

b) Recovery

The recovery technique allows us to replace the root node,

whenever it fails, with another node that is closest to the

hierarchy.

Recovery algorithm

Input:grid configuration file

Output: grid replication file

Ni: root node of the grid

Nj: another node of the grid

The root node Ni replicates data over all his child nodes

If Ni fails then if Nj is not failing with good configuration

and is closest to the root node in the hierarchy

Then replace the root node Ni with Nj.

c) Fault tolerance

Once the data is replicated the fault tolerance can be

managed. Indeed, when a node fails, the data will be

available on another node; so we can get a replica on the

nearest neighbor node to minimize the response time.

We used a hybrid solution for fault tolerance. For the root

node, a masking solution that consists of replacing the root

node with another one having the best configuration is used.

For the other nodes, a no masking solution is used and in

case of failure, we search the nearest replica.

Senhadji sarra et al. / IJCTT, 68(11), 53-58, 2020

 56

Fault tolerance algorithm

Considering:

Ni: root node of the grid

Nj, Nk: other nodes of the grid

Masking solution (root node)

If Ni fails then

If Nj id the nearest in the hierarchy and has a good

configuration

Then Ni is replaced by Nj

End if

End if

No masking solution (node ≠ root node)

If an access data is requested to Nj and Nj is failed then a

replica of data is searched in another node Nk

If Nk is not failing and is near to Nj in term of transfer time

then the request is redirected to the node Nk

C. Experimentations:

 To evaluate our approach we use the Optorsim tool [12]

which is a Grid simulator designed to test dynamic

replication strategies.

a) Simulation :

 Optimism offers many types of optimizers; we choose

the most used ones:

 SimpleOptimiser - no replication

 LruOptimiser - always replicates, deleting least

recently created file

 LfuOptimiser - always replicates, deleting least

frequently accessed file.

Fig. 2 logical view of replicas

 In figure 2 we have an example of a logical view of the

replicas hosted in 20 sites.

Masking solution (root site)

The recovery of the root site is performed as described in

section IV. B. 2.

Fig. 3 No masking solution output

No masking solution (site ≠ root site)

When access is addressed to a failed site, the request is

redirected to another site as described in section IV. B. 1.

Fig. 4 Masking solution output

b) Results :

In this section, we present the results of the simulation

Fig. 5 number of replicas

Senhadji sarra et al. / IJCTT, 68(11), 53-58, 2020

 57

Fig. 6 distribution time of replicas

Fig. 7 replication rate

In Fig 5, Fig 6 we have the total number of created replicas

and the time consumed for replication.

The rate of replication in each site is shown in Fig 7.

Optimizer 1: no replication

In fig. 9 the number of redirected request is null because

there are no replicas in sites, except the root node

Fig. 8 number of request per site

Fig. 9 number of a redirected request

Optimizer 2: LRU

In fig. 10 and fig. 12 we remark that requests addressed

to sites that do not have a replica (i.e. site 5, 6, 8, 9, 16, and

18) are redirected to the nearest site to respond to the request.

Fig. 10 number of request per site

Fig. 11 number of a redirected request

Optimizer 3: LFU

Fig. 12 number of request per site

Senhadji sarra et al. / IJCTT, 68(11), 53-58, 2020

 58

Fig. 13 number of a redirected request

In fig. 12 and fig. 13 we remark that requests addressed to

sites that do not have a replica (i.e. site 5, 6, 8, 9, 11, 14, and

19) are redirected to the nearest site to respond to the request.

VI. CONCLUSION

 In this paper, we dressed the fault-tolerance problem in

grid systems. We find two main solutions that handle this

problem: masking technique and no masking technique.

 For the masking one, the fault and its resolution are

hidden from the client and the system still being operational.

Contrarily to the no masking solution, the fault can stop the

execution for a while until the fault is resolved.

The masking technique indeed appears as the best

solution because it assures the continuity of the system, but

this solution is too expensive to implement especially when

the number of resources grows.

In no masking solution, replication technique is used to

guarantee a high availability where several copies can be

saved in different sites offering better response time.

 Otherwise, the masking solutions are based on a

recovery technique that consists of repairing fault but this

solution presents some inconvenient as synchronization

 For these reasons, we choose a hybrid solution based on

masking and no masking solution using respectively recovery

and replication techniques. We simulate our approach with

the simulator GRIDSIM and many experiments were

presented. The obtained results show a significant gain in

terms of fault tolerance and execution time.

 In conclusion, some perspectives on our work can be

cited:

• Use of recovery check pointing methods or probabilistic

methods to recover the state of the system in the event of a

failure.

• Adaptation of our approach in a real grid.

REFERENCES
[1] Abawajy, Jemal H. "Fault-tolerant scheduling policy for grid

computing systems", 18th International Parallel and Distributed

Processing Symposium, 2004. Proceedings. IEEE, 2004.
[2] Amoon, Mohammed. "Fault tolerance in grids using job replication",

International Journal of Computing 11.2 (2014): 115-121.

[3] Balazinska, Magdalena, et al. "Fault-tolerance in the Borealis
distributed stream processing system." Proceedings of the 2005 ACM

SIGMOD international conference on Management of data. 2005

[4] Chandy, K. Mani, and Leslie Lamport. "Distributed snapshots:
Determining global states of distributed systems." ACM Transactions

on Computer Systems (TOCS) 3.1 (1985): 63-75.

[5] Chtepen, Maria, et al. “Evaluation of Replication and Rescheduling
Heuristics for Grid Systems with Varying Resource Availability.”

Proceedings of the 18th IASTED International Conference on Parallel

and Distributed Computing and Systems, ACTA Press Anaheim,
2006, pp. 622–27.

[6] Erciyes, Kayhan. "A replication-based fault tolerance protocol using

group communication for the grid." International Symposium on
Parallel and Distributed Processing and Applications. Springer,

Berlin, Heidelberg, 2006.

[7] Garg Ritu, Singh Kumar Awadhesh, “Fault Tolerance in Grid
Computing: State of the Art and Open Issues,” International Journal

of Computer Science & Engineering Survey (IJCSES) Vol.2, No.1,

Feb 2011.
[8] Hwang, S., and C. Kesselman. “Grid workflow: a flexible failure

handling framework for the grid.” High Performance Distributed

Computing, 2003. Proceedings. 12th IEEE International Symposium
on (2003): 126-137.

[9] Leili Mohammad Khalil, Maryam Etminan and Far Amir Masoud

Rahman, ”RFOH: A New Fault-Tolerant Job Scheduler in Grid
Computing”, In Second International Conference on Computer

Engineering and Applications (2010).

[10] A. Nguyen-Tuong, “Integrating fault-tolerance techniques in
Grid applications”, Ph.D. Dissertation, University of Virginia,

August 2000.

[11] Oliner, A.J., Sahoo, R.K., Moreira, J.E., Gupta, M.:
“Performance Implications of Periodic Checkpointing on Large-

Scale Cluster Systems”, In Proceedings of the 19th IEEE

International Parallel and Distributed Processing Symposium,
Washington, 2005.

[12] https://sourceforge.net/projects/optorsim/

[13] Qureshi, K., Khan, F.G., Manuel, P. et al., “A hybrid fault tolerance
technique in grid computing system”. J Supercomput 56, 106–128

(2011).

[14] Eric Roman, “A survey of Checkpoint/Restart Implementations”,
Lawrence Berkley National Laboratory, CA, 2002.

[15] Townend, Paul, and Jie Xu. "Fault tolerance within a grid

environment." Timeout 1.S2 (2003): S3.
[16] Wrzesińska, Gosia, et al. "Fault-tolerant scheduling of fine-grained

tasks in grid environments." The International Journal of High-
Performance Computing Applications 20.1 (2006): 103-114.

[17] Amin, Zeeshan, Harshpreet Singh, and Nisha Sethi. "Review on fault

tolerance techniques in cloud computing." International Journal of
Computer Applications 116.18 (2015).

[18] Matarneh, Feras & Matarneh, Rami. “Enhancing Fault-Tolerance in

Ring Topology Based on Waiting Queue and Timestamp”.
International Journal of Computer Trends and Technology. (2017)

